Steric Effects on the Carbonyl Stretching Frequencies of Alkyl Styryl Ketones

By R. W. WOODARD and D. W. BOYKIN, JUN.*

(Department of Chemistry, Georgia State University, Atlanta, Georgia 30303)

Summary Quantitative relationships between the carbonyl stretching frequency and the Taft σ^* and E_s parameters have been found for the *s-cis-* and *s-trans*conformers of alkyl styryl ketones; estimates of the contribution by the steric parameter to these relationships have been made.

As part of a general investigation of structure-reactivity relationships of $\alpha\beta$ -unsaturated ketones, we have observed a novel dependency of the carbonyl stretching frequency on steric effects for alkyl styryl ketones. Linear free energy relationships have been previously reported to exist between the carbonyl stretching frequency of several systems of carbonyl compounds and Taft σ^* values.^{1,2} Also, numerous reports have appeared in which interpretations of various stretching frequency data have been made in terms of steric effects.^{2,3} However, there does not appear to have been a case reported for which the role of the steric effect has been quantitatively assessed. We now report the observation of a quantitative relationship between the carbonyl stretching frequency and σ^* and E_8 for the *s-cis*and *s-trans-*conformers of a series of alkyl styryl ketones. investigation to alkyl styryl ketones with alkyl groups of the same type (\cdot CH₂R). Hayes and Timmons⁵ have recently reported the carbonyl band assignments for the *s*-cis- and *s*-trans- (or non *s*-cis-) conformers for some alkyl styryl ketones, and we have made band assignments on analogy with their work. Table 1 contains the stretching-fre-

TABLE 1							
Carbonyl band positions	(cm^{-1}) for PhCH :	CH-CO-CH ₂ R in CCl ₄ ^a					
R	s-cis	s-trans					

11	3-013	5-11 uns
н	1697.7	$1676 \cdot 3$
Me	$1697 \cdot 2$	1674.6
Et	$1695 \cdot 4$	1672.5
Pr ⁿ	$1695 \cdot 1$	1671.9
Pri	1693.7	1669.3

^a Measurements were made on ca. 5% solutions at ca. 40 \pm 3° using a Beckman IR-12 instrument essentially as described in ref. 7.

quency data for the two conformers of all the alkyl styryl ketones of the type \cdot CH₂R, where R is a simple alkyl group for which both σ^* and E_s values are known.⁶ Table 2

	νι	s. σ*		v vs. Es				v vs. σ^* and E_8					
		~				· · · · · ·	·			·			<u> </u>
\$	ρ	r	i	\$	ρ	r	i	a	b	i	е	r	$\% E_8$
0.041	0.024	0.754	-41.5	0.135	0.209	0.947	-356.0	7.5 ± 5.2	3.57 ± 0.76	1697.8	0.428	0.982	76 + 13
0.037	0.016	0.803	-26.9	0.118	0.131	0.960	-219.4	15.8 ± 2.9	$5 \cdot 55 \pm 0 \cdot 42$	1676.4	0.237	0.998	70 ± 4
$s = $ standard deviation. $\rho = $ slope of the line. $r = $ correlation coefficient. $i = $ intercept. $a = $ regression coefficient for σ^* $b = $ regression coefficient for E_8 . $e = $ standard error of estimate. $\% E_8 = $ contribution of E_8 to correlation; see ref. 8.													
	0·037 deviatio	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 TABLE 2

 Results from statistical treatments of band position data

Charton⁴ has recently demonstrated that the Taft steric parameter E_{s} is a function of the van der Waals radii of the groups. In view of these results, we have limited our

contains the results of a least-squares and a multipleregression treatment of the stretching-frequency data by methods we have previously described;⁷ the data were

As can be seen from Table 2, very poor correlations are obtained using σ^* with data from both conformers. In contrast, reasonable correlations are obtained when the stretching frequency data are treated with E_8 . Indeed, the two-parameter approach employing σ^* and E_s gives good correlations for both the s-cis- and s-trans-conformers (r = 0.982 and 0.998, respectively). The E_8 value of approximately 75% for both the s-cis- and s-trans-conformers demonstrates the importance of steric effects on the carbonyl stretching frequency in these systems.

We suggest, in this case, that the role of the steric factor on the carbonyl stretching frequency is steric inhibition of resonance. Steric inhibition of resonance and its influence on the carbonyl stretching frequency in this system can be described in terms of the degree of coplanarity of the styryl group with the carbonyl group. The degree of coplanarity should be a function of non-bonding interactions of the alkyl group with the vinyl hydrogen α to the carbonyl group in the s-cis-conformer and the interaction between the alkyl group and the vinyl hydrogen β to the carbonyl group in the s-trans-conformer.

(Received, April 1st, 1970; Com. 445.)

¹ (a) D. G. O'Sullivan and P. W. Sadler, J. Chem. Soc., 1957, 4144; (b) L. J. Bellamy, "The Origins of Group Frequency Shifts," in Spectroscopy," ed. M. J. Wells, The Institute of Petroleum, London, 1962, p. 216; (c) L. J. Bellamy, "Advances in Infrared Group "Spectroscopy," ed. M. J. Wells, The Institute Frequencies," Methuen, London, 1968, p. 136. ² W. H. Lunn, Spectrochim. Acta, 1960, 16, 1088.

³ Ref. Ic, p. 104 and p. 255; L. J. Bellamy and R. L. Williams, J. Chem. Soc., 1957, 863.
⁴ M. Charton, J. Amer. Chem. Soc., 1969, 91, 615.
⁵ W. P. Hayes and C. J. Timmons, Spectrochim. Acta, 1968, 24, A, 323.
⁶ R. W. Taft, jun., "Separation of Polar, Steric and Resonance Effects in Reactivity," in "Steric Effects in Organic Chemistry," ed. M. S. Newman, Wiley, New York, 1956, p. 556; V. A. Pal'm, Russ. Chem. Rev., 1961, 30, 47.
⁷ N. L. Schwa end D. W. Baydia inc. L. Our. Chem. 107(25, 750)

⁷ N. L. Sılver and D. W. Boykin, jun., J. Org. Chem., 1970, 35, 759.
 ⁸ C. G. Swain and E. C. Lupton, jun., J. Amer. Chem. Soc., 1968, 90, 4328.